Xavier's Blog

做更美好的自己

C 语言实现面向对象编程

C

C 语言实现面向对象编程


1、引言

面向对象编程(OOP)并不是一种特定的语言或者工具,它只是一种设计方法、设计思想。它表现出来的三个最基本的特性就是封装、继承与多态。很多面向对象的编程语言已经包含这三个特性了,例如 Smalltalk、C++、Java。但是你也可以用几乎所有的编程语言来实现面向对象编程,例如 ANSI-C。要记住,面向对象是一种思想,一种方法,不要太拘泥于编程语言。

2、封装

封装就是把数据和方法打包到一个类里面。其实C语言编程者应该都已经接触过了,C 标准库 中的 fopen(), fclose(), fread(), fwrite()等函数的操作对象就是 FILE。数据内容就是 FILE,数据的读写操作就是 fread()、fwrite(),fopen() 类比于构造函数,fclose() 就是析构函数。这个看起来似乎很好理解,那下面我们实现一下基本的封装特性。

#ifndef SHAPE_H
#define SHAPE_H

#include <stdint.h>

// Shape 的属性
typedef struct {
    int16_t x; 
    int16_t y; 
} Shape;

// Shape 的操作函数,接口函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y);
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);
int16_t Shape_getX(Shape const * const me);
int16_t Shape_getY(Shape const * const me);

#endif /* SHAPE_H */123456789101112131415161718

这是 Shape 类的声明,非常简单,很好理解。一般会把声明放到头文件里面 “Shape.h”。

来看下 Shape 类相关的定义,当然是在 “Shape.c” 里面。

#include "shape.h"

// 构造函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y)
{
    me->x = x;
    me->y = y;
}

void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy) 
{
    me->x += dx;
    me->y += dy;
}

// 获取属性值函数
int16_t Shape_getX(Shape const * const me) 
{
    return me->x;
}
int16_t Shape_getY(Shape const * const me) 
{
    return me->y;
}123456789101112131415161718192021222324

再看下 main.c

#include "shape.h"  /* Shape class interface */
#include <stdio.h>  /* for printf() */

int main() 
{
    Shape s1, s2; /* multiple instances of Shape */

    Shape_ctor(&s1, 0, 1);
    Shape_ctor(&s2, -1, 2);

    printf("Shape s1(x=%d,y=%d)\n", Shape_getX(&s1), Shape_getY(&s1));
    printf("Shape s2(x=%d,y=%d)\n", Shape_getX(&s2), Shape_getY(&s2));

    Shape_moveBy(&s1, 2, -4);
    Shape_moveBy(&s2, 1, -2);

    printf("Shape s1(x=%d,y=%d)\n", Shape_getX(&s1), Shape_getY(&s1));
    printf("Shape s2(x=%d,y=%d)\n", Shape_getX(&s2), Shape_getY(&s2));

    return 0;
}123456789101112131415161718192021

编译之后,看看执行结果:

Shape s1(x=0,y=1)
Shape s2(x=-1,y=2)
Shape s1(x=2,y=-3)
Shape s2(x=0,y=0)1234

整个例子,非常简单,非常好理解。以后写代码时候,要多去想想标准库的文件IO操作,这样也有意识的去培养面向对象编程的思维。

3、继承

继承就是基于现有的一个类去定义一个新类,这样有助于重用代码,更好的组织代码。在 C 语言里面,去实现单继承也非常简单,只要把基类放到继承类的第一个数据成员的位置就行了。

例如,我们现在要创建一个 Rectangle 类,我们只要继承 Shape 类已经存在的属性和操作,再添加不同于 Shape 的属性和操作到 Rectangle 中。

下面是 Rectangle 的声明与定义:

#ifndef RECT_H
#define RECT_H

#include "shape.h" // 基类接口

// 矩形的属性
typedef struct {
    Shape super; // 继承 Shape

    // 自己的属性
    uint16_t width;
    uint16_t height;
} Rectangle;

// 构造函数
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
                    uint16_t width, uint16_t height);

#endif /* RECT_H */12345678910111213141516171819
#include "rect.h"

// 构造函数
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
                    uint16_t width, uint16_t height)
{
    /* first call superclass’ ctor */
    Shape_ctor(&me->super, x, y);

    /* next, you initialize the attributes added by this subclass... */
    me->width = width;
    me->height = height;
}12345678910111213

我们来看一下 Rectangle 的继承关系和内存布局

内存布局 因为有这样的内存布局,所以你可以很安全的传一个指向 Rectangle 对象的指针到一个期望传入 Shape 对象的指针的函数中,就是一个函数的参数是 “Shape *”,你可以传入 “Rectangle *”,并且这是非常安全的。这样的话,基类的所有属性和方法都可以被继承类继承!

#include "rect.h"  
#include <stdio.h> 

int main() 
{
    Rectangle r1, r2;

    // 实例化对象
    Rectangle_ctor(&r1, 0, 2, 10, 15);
    Rectangle_ctor(&r2, -1, 3, 5, 8);

    printf("Rect r1(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r1.super), Shape_getY(&r1.super),
           r1.width, r1.height);
    printf("Rect r2(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r2.super), Shape_getY(&r2.super),
           r2.width, r2.height);

    // 注意,这里有两种方式,一是强转类型,二是直接使用成员地址
    Shape_moveBy((Shape *)&r1, -2, 3);
    Shape_moveBy(&r2.super, 2, -1);

    printf("Rect r1(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r1.super), Shape_getY(&r1.super),
           r1.width, r1.height);
    printf("Rect r2(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(&r2.super), Shape_getY(&r2.super),
           r2.width, r2.height);

    return 0;
}12345678910111213141516171819202122232425262728293031

输出结果:

Rect r1(x=0,y=2,width=10,height=15)
Rect r2(x=-1,y=3,width=5,height=8)
Rect r1(x=-2,y=5,width=10,height=15)
Rect r2(x=1,y=2,width=5,height=8)1234

4、多态

C++ 语言实现多态就是使用虚函数。在 C 语言里面,也可以实现多态。 现在,我们又要增加一个圆形,并且在 Shape 要扩展功能,我们要增加 area() 和 draw() 函数。但是 Shape 相当于抽象类,不知道怎么去计算自己的面积,更不知道怎么去画出来自己。而且,矩形和圆形的面积计算方式和几何图像也是不一样的。

下面让我们重新声明一下 Shape 类

#ifndef SHAPE_H
#define SHAPE_H

#include <stdint.h>

struct ShapeVtbl;
// Shape 的属性
typedef struct {
    struct ShapeVtbl const *vptr;
    int16_t x; 
    int16_t y; 
} Shape;

// Shape 的虚表
struct ShapeVtbl {
    uint32_t (*area)(Shape const * const me);
    void (*draw)(Shape const * const me);
};

// Shape 的操作函数,接口函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y);
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);
int16_t Shape_getX(Shape const * const me);
int16_t Shape_getY(Shape const * const me);

static inline uint32_t Shape_area(Shape const * const me) 
{
    return (*me->vptr->area)(me);
}

static inline void Shape_draw(Shape const * const me)
{
    (*me->vptr->draw)(me);
}


Shape const *largestShape(Shape const *shapes[], uint32_t nShapes);
void drawAllShapes(Shape const *shapes[], uint32_t nShapes);

#endif /* SHAPE_H */12345678910111213141516171819202122232425262728293031323334353637383940

看下加上虚函数之后的类关系图 虚函数类图

4.1 虚表和虚指针

虚表(Virtual Table)是这个类所有虚函数的函数指针的集合。

虚指针(Virtual Pointer)是一个指向虚表的指针。这个虚指针必须存在于每个对象实例中,会被所有子类继承。

在《Inside The C++ Object Model》的第一章内容中,有这些介绍。

4.2 在构造函数中设置vptr

在每一个对象实例中,vptr 必须被初始化指向其 vtbl。最好的初始化位置就是在类的构造函数中。事实上,在构造函数中,C++ 编译器隐式的创建了一个初始化的vptr。在 C 语言里面, 我们必须显示的初始化vptr。

下面就展示一下,在 Shape 的构造函数里面,如何去初始化这个 vptr。

#include "shape.h"
#include <assert.h>

// Shape 的虚函数
static uint32_t Shape_area_(Shape const * const me);
static void Shape_draw_(Shape const * const me);

// 构造函数
void Shape_ctor(Shape * const me, int16_t x, int16_t y) 
{
    // Shape 类的虚表
    static struct ShapeVtbl const vtbl = 
    { 
       &Shape_area_,
       &Shape_draw_
    };
    me->vptr = &vtbl; 
    me->x = x;
    me->y = y;
}


void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy)
{
    me->x += dx;
    me->y += dy;
}


int16_t Shape_getX(Shape const * const me) 
{
    return me->x;
}
int16_t Shape_getY(Shape const * const me) 
{
    return me->y;
}

// Shape 类的虚函数实现
static uint32_t Shape_area_(Shape const * const me) 
{
    assert(0); // 类似纯虚函数
    return 0U; // 避免警告
}

static void Shape_draw_(Shape const * const me) 
{
    assert(0); // 纯虚函数不能被调用
}


Shape const *largestShape(Shape const *shapes[], uint32_t nShapes) 
{
    Shape const *s = (Shape *)0;
    uint32_t max = 0U;
    uint32_t i;
    for (i = 0U; i < nShapes; ++i) 
    {
        uint32_t area = Shape_area(shapes[i]);// 虚函数调用
        if (area > max) 
        {
            max = area;
            s = shapes[i];
        }
    }
    return s;
}


void drawAllShapes(Shape const *shapes[], uint32_t nShapes) 
{
    uint32_t i;
    for (i = 0U; i < nShapes; ++i) 
    {
        Shape_draw(shapes[i]); // 虚函数调用
    }
}1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677

注释比较清晰,这里不再多做解释。

4.3 继承 vtbl 和 重载 vptr

上面已经提到过,基类包含 vptr,子类会自动继承。但是,vptr 需要被子类的虚表重新赋值。并且,这也必须发生在子类的构造函数中。下面是 Rectangle 的构造函数。

#include "rect.h"  
#include <stdio.h> 

// Rectangle 虚函数
static uint32_t Rectangle_area_(Shape const * const me);
static void Rectangle_draw_(Shape const * const me);

// 构造函数
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
                    uint16_t width, uint16_t height)
{
    static struct ShapeVtbl const vtbl = 
    {
        &Rectangle_area_,
        &Rectangle_draw_
    };
    Shape_ctor(&me->super, x, y); // 调用基类的构造函数
    me->super.vptr = &vtbl;           // 重载 vptr
    me->width = width;
    me->height = height;
}

// Rectangle's 虚函数实现
static uint32_t Rectangle_area_(Shape const * const me) 
{
    Rectangle const * const me_ = (Rectangle const *)me; //显示的转换
    return (uint32_t)me_->width * (uint32_t)me_->height;
}

static void Rectangle_draw_(Shape const * const me) 
{
    Rectangle const * const me_ = (Rectangle const *)me; //显示的转换
    printf("Rectangle_draw_(x=%d,y=%d,width=%d,height=%d)\n",
           Shape_getX(me), Shape_getY(me), me_->width, me_->height);
}
123456789101112131415161718192021222324252627282930313233343536

4.4 虚函数调用

有了前面虚表(Virtual Tables)和虚指针(Virtual Pointers)的基础实现,虚拟调用(后期绑定)就可以用下面代码实现了。

uint32_t Shape_area(Shape const * const me)
{
    return (*me->vptr->area)(me);
}1234

这个函数可以放到.c文件里面,但是会带来一个缺点就是每个虚拟调用都有额外的调用开销。为了避免这个缺点,如果编译器支持内联函数(C99)。我们可以把定义放到头文件里面,类似下面:

static inline uint32_t Shape_area(Shape const * const me) 
{
    return (*me->vptr->area)(me);
}1234

如果是老一点的编译器(C89),我们可以用宏函数来实现,类似下面这样:

#define Shape_area(me_) ((*(me_)->vptr->area)((me_)))1

看一下例子中的调用机制: 虚拟调用机制

4.5 main.c

#include "rect.h"  
#include "circle.h" 
#include <stdio.h> 

int main() 
{
    Rectangle r1, r2; 
    Circle    c1, c2; 
    Shape const *shapes[] = 
    { 
        &c1.super,
        &r2.super,
        &c2.super,
        &r1.super
    };
    Shape const *s;

    // 实例化矩形对象
    Rectangle_ctor(&r1, 0, 2, 10, 15);
    Rectangle_ctor(&r2, -1, 3, 5, 8);

    // 实例化圆形对象
    Circle_ctor(&c1, 1, -2, 12);
    Circle_ctor(&c2, 1, -3, 6);

    s = largestShape(shapes, sizeof(shapes)/sizeof(shapes[0]));
    printf("largetsShape s(x=%d,y=%d)\n", Shape_getX(s), Shape_getY(s));

    drawAllShapes(shapes, sizeof(shapes)/sizeof(shapes[0]));

    return 0;
}1234567891011121314151617181920212223242526272829303132

输出结果:

largetsShape s(x=1,y=-2)
Circle_draw_(x=1,y=-2,rad=12)
Rectangle_draw_(x=-1,y=3,width=5,height=8)
Circle_draw_(x=1,y=-3,rad=6)
Rectangle_draw_(x=0,y=2,width=10,height=15)12345

5、总结

还是那句话,面向对象编程是一种方法,并不局限于某一种编程语言。用 C 语言实现封装、单继承,理解和实现起来比较简单,多态反而会稍微复杂一点,如果打算广泛的使用多态,还是推荐转到 C++ 语言上,毕竟这层复杂性被这个语言给封装了,你只需要简单的使用就行了。但并不代表,C 语言实现不了多态这个特性。

用 C 语言实现面向对象编程,简直太 Skr 了!